Aller au contenu principal Aller au menu Aller à la recherche

Light in complex nanostructures

The Light in Complex Nanostructures group studies the properties of coherent systems involving multiple and strong scattering of light with individual or ensemble of quantum or classical nano-objects or both. We tackle the problem starting from the elementary level (individual nanoparticles), to the microsystem level (nanoparticles possibly dressed by quantum resonators, small nanoparticle assemblies), towards the mesoscopic scale (metasurfaces with many nanoparticles forming complex macrosystems).

Light in Complex Nanostructures group, 2017
The Light in Complex Nanostructures group in 2017. From left to right: Philippe Lalanne, Wei Yan, Maxime Bertrand, Louis Bellando, Alexandre Gras, Kevin Vynck


  • Adrian AGREDA (Post-doctoral fellow)
  • Denis ARRIVAULT (CNRS Engineer)
  • Maxime BERTRAND (PhD student)
  • Alexandre GRAS (PhD student, collaboration INRIA)
  • Philippe LALANNE (CNRS Research Director & group leader)
  • Armel PITELET (Post-doctoral fellow)
  • Marie-Caroline SOLIGNAC (PhD student, collaboration SVI - Saint Gobain Recherche)
  • Loïc TRAN (PhD student, collaboration L'Oréal)
  • Kevin VYNCK (CNRS Research Scientist)
  • Tong WU (Post-doctoral fellow)



  • Qiang BAI (Post-doctoral fellow)
  • Louis BELLANDO (Post-doctoral fellow, now at LOMA, Talence, France)
  • Kévin COGNEE (PhD student, now at City University of New York, USA)
  • Alexis DEVILEZ (Post-doctoral fellow)
  • Rémi FAGGIANI (PhD student, now at Greenerwave, Paris, France)
  • Wei YAN (Post-doctoral fellow, now at Westlake University, Hangzhou, China)
  • Jianji YANG (Post-doctoral fellow, now at Finisar Corporation, Oregon, USA)
  • Xiaorun ZANG (PhD student, now at Tampere University of Technology, Finland)



We welcome applications for post-doctoral positions, PhD positions and internships mainly on two topics:

  1. Non-Hermitian physics with quasinormal modes (theory and applications), see our recent publications for more details.
  2. New visual appearance with metasurfaces (theory and experiments). Metasurfaces have been mainly used to control structural colour so far. We study how to harness disordered optical metasurfaces to create new visual apperance that have not been yet observed nor modelled.

To apply, please contact Philippe Lalanne directly by email with your CV and contact references.



  • From Mérignac airport, take a Taxi (address: Institut d'Optique graduate School, 1 rue François Mitterrand, Talence)
  • From Gare Saint Jean, there are many combinations Bus+Tram. For instance, take Bus 9 (direction Bordeaux Brandenburg, 10 stops, exit at stop Barrière St Genès) or Bus 10 (direction Gradignan Beausoleil, 14 stops, exit at stop Peixotto), and then with the same ticket take TRAM B (direction Pessac, exit at stop Arts et Métiers). All trams stops at Arts et Métiers.




MAN (Modal Analysis of Nanoresonators)

MAN is an open-source software for analyzing electromagnetic micro and nanoresonators. It is composed of two solvers, QNMEig and QNMPole, which compute and normalize the quasinormal modes (QNMs), i.e. the quality factor Q and mode volume V. QNMEig operates under the COMSOL Multiphysics platform; QNMPole can be used with any frequency-domain electromagnetic solver. These solvers are valued by an increasing number of toolboxes, which allow a transparent analysis of nanoresonators with analytical formulae: reconstruction of the field in the modal basis, scattering and extinction cross-section spectra, LDOS spatial and spectral maps, Purcell factor, multipolar decomposition, generation of second-harmonics, temporal domain analysis … In the present version, the toolboxes are solver dependent; this is formal and with a minor effort, the user using one solver may benefit from the toolboxes developed for the other solver. In future versions, the toolboxes will be shared.

Download MAN




RETOP is an open-source Matlab toobox that implements a near-to-far-field transformation for computing the radiation diagram. This transformation is implemented in many electromagnetic software, however for most of them, like COMSOL multiphysics, the transformation is restricted to object surrounded by uniform media (free space). RETOP operates for objects on substrates or buried in stratified media. It can be used to compute the radiation diagram in the superstrate and the substrate . The substrate may support guided modes or surface plasmon modes with metal layers. RETOP additionally computes the in-plane radiation diagram in the guided modes. It just needs the near-field (computed on a rectangular box that contains the object with any full-wave Maxwell’s solver) to compute the radiation diagrams. It is especially relevant for calculating the scattering of nanoparticle on substrates. Special attention is made to the interface with COMSOL Multiphysics.

Download RETOP




RETICOLO implements the rigorous coupled wave analysis (RCWA) for 1D (classical and conical diffraction) and 2D crossed gratings. It operates under a MATLAB environment and incorporates an efficient and accurate toolbox for visualizing the electromagnetic field in the grating. As a spinoff, version V9 launched in 2021 incorporates a toolbox to analyze thin film stacks made of uniform media with arbitrary anisotropy.







Philippe Lalanne is Research Director at CNRS and is an international expert in computational and nanoscale electrodynamics. He was first involved in the group of Pierre Chavel at l'Institut d’Optique at Orsay. In 1995, he spent a sabbatical year with G.M. Morris at the Institute of Optics in Rochester.

With his colleagues, he has launched new modal theories and improved numerical tools for gratings [JOSA A 1996], waveguides [JOSA A 2001, Opt. Express 2007] and microresonators [PRL 2013, PRB 2018]. He has used these tools to provide deep insight into the physical mechanisms involved in key nanoscale optical phenomena and devices, e.g. light confinement in photonic-crystal cavities [APL 2001, Nature 2004], the extraordinary optical transmission [PRL 2002, Nature 2008, Nature 2012], light interaction with plasmonic nanoresonators [PRL 2013, LPR 2018]. He has pioneered the development of large-NA metalenses [JOSA A 1999, Laser Photon. Rev. 2017] and has designed and demonstrated novel nanostructures with record or completely novel performance in their time, e.g. metalens [JOSA A 1999], slow light injectors [Opt. Lett. 2007], directional plasmon couplers [PRL 2005, Nano Lett. 2011], broadband single-channel photon sources [Nature Photonics 2010].

He has supervised 17 PhD candidates and co-supervised 6 PhD candidates. He is an Associate Editor of Optica, a member of the editorial board of Laser & Photonics Reviews, and is director of GDR Ondes, a broad virtual laboratory that gathers the French community working on acoustic and electromagnetic waves. He is a recipient of the Bronze medal of CNRS and the prix Fabry de Gramont of the Société Française d’Optique. He is a fellow of the IOP, OSA and SPIE. 



Kevin Vynck is Research Scientist at CNRS and is specialized in the theoretical and numerical modelling of wave transport and scattering in complex media.

With his colleagues, he has provided an original viewpoint on the origin of photonic band structures of periodic dielectric rod arrays [PRL 2009], unveiled the impact of structural correlations in disordered media on light transport, localization and trapping [Nature Materials 2012; Nature Materials 2014PRL 2014], developed knowledge on light propagation and weak localization in disordered media containing large-scale (fractal) heterogeneities [PRL 2010; PRL 2012; PRE 2013], elaborated a theory on the polarization and spatial coherence of light in disordered media [PRA 2014; PRA 2016], and developed a novel numerical method allowing for efficient multiple light scattering calculations by large ensembles of non-spherical particles embedded in optical stacks [JOSA A 2020].

He has co-authored 40 papers in international peer-reviewed journals, 1 book chapter and 3 patents. He is PI of the Young Researcher ANR projet NanoMiX ("Nanophotonics of complex media: new modeling tools towards new optical phenomena") and coordinates the modeling activity in the collaborative ANR project Nano-Appearance ("Complex Nanostructured Surfaces for Visual Appearance Design"). He animates Axis 3 ("Modeling") of the GDR APPAMAT, which federates the french scientific community working on the appearance of materials, surfaces and objects. At LP2N, he is a member of the Board of the Laboratory Council. In 2019, he was awarded the CNRS Bronze Medal.



Master 1: optical waveguides
  1. Chapter 1: Macroscopic Maxwell’s equations
  2. Chapter 2: Introduction to optical waveguide modes
  3. Chapter 3: Classical waveguide geometries
  4. Chapter 4: Theory of optical waveguides
  5. Chapter 5: Pulse propagation in waveguides

Download course optical waveguides

Master 2: Optical artificial materials
  1. Outline
  2. Introduction (slides)
  3. Chapter 1 Bloch modes
  4. Chapter 2 Equivalence between subwavelength gratings and homogeneous thin films
  5. Chapter 3 Metamaterials & metasurfaces
  6. Chapter 6 Plasmonics

Download course optical metasurfaces


  1. Metalenses at visible wavelengths: Laser Photon. Rev. 11, 1600295 (2017). The article makes an historical perspective on high-NA metalenses, rehabilitating pionneer works well before the celebrated Report published in Science (vol. 352, June 2016) by the Harvard group, "Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging".
  2. Structural slow waves: ACS Photon. 6, 4-17 (2019). The article provides a comparison between photonic and plasmonic modes, helping understanding structural slow light with both its facets.

Download the articles


Site réalisé par Intuitiv Interactive